Величина угла АВС равна 110.
Объяснение:
Поведем дополнительное построение. Из точки М, на сторону АВ проведем медиану МК. По условию, АВ = 2 * МВ, тогда АК = ВК = АВ / 2 = МВ.
Тогда треугольник ВКМ равнобедренный, а следовательно угол ВКМ = ВМК = (180 – 40) / 2 = 70. Точка М середина стороны АС, точка К середина стороны АВ, тогда отрезок МК средняя линия треугольника АВС. Тогда АС параллельно МК.
Угол СВМ = ВМК = 70, как накрест ежащие углы при пересечении параллельных прямых ВС и МК секущей ВМ, тогда угол АВС = АВМ + АВМ = 70 + 40 = 110.
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.