через т О перетину діагоналей паралелограма ABCD до його площини проведено перпендикуляр OM довжиною 4 см. Знайдіть відстань від т M до прямих, що містять сторони паралелограма, якщо AB=12см, BC=20см, кут BAD=30°
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0