Очевидно, что одной из сторон треугольника, которая равна 4 см, является сторона, проекция которой равна 3 см.
В противном случае, если бы это была другая сторона, то треугольник прекратился бы в линию, так как длина стороны (4 см) и её проекция (4 см) были бы равны.
1) В прямоугольном треугольнике сторона 4 см является гипотенузой, а её проекция (3 см) является катетом. По теореме Пифагора находим высоту:
h = √(4²-3²)= √(16-9) = √7 см.
2) Соответственно третья сторона х, которую необходимо найти, является гипотенузой в прямоугольном треугольнике с катетом
h =√7см и другим катетом 4 см (проекцией этой стороны на большую сторону треугольника):
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной. По свойству касательной и секущей ОК²=ОМ·ОN. Пусть ОМ=х, тогда ОN=OM+MN=x+6, 4²=x(х+6), х²+6х-4=0, х1=-8, отрицательное значение не подходит, х2=2. ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом. Пусть радиус окружности около тр-ка КMN равен r. На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r. Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды. ∠MKN=α, ∠MPN=β. Обратим внимание, что углы α и β - это половина градусной меры хорды. MN=2R·sinβ ⇒ sinβ=MN/2R. MN=2r·sinα ⇒ sinα=MN/2r. Сравним синусы, предположив, что они равны. MN/2R=MN/2r. 1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα. Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°. В этом диапазоне синус угла тем больше, чем больше его градусная мера, значит α>β. Доказано.
√23 см ≈ 4,8 см.
Объяснение:
Очевидно, что одной из сторон треугольника, которая равна 4 см, является сторона, проекция которой равна 3 см.
В противном случае, если бы это была другая сторона, то треугольник прекратился бы в линию, так как длина стороны (4 см) и её проекция (4 см) были бы равны.
1) В прямоугольном треугольнике сторона 4 см является гипотенузой, а её проекция (3 см) является катетом. По теореме Пифагора находим высоту:
h = √(4²-3²)= √(16-9) = √7 см.
2) Соответственно третья сторона х, которую необходимо найти, является гипотенузой в прямоугольном треугольнике с катетом
h =√7см и другим катетом 4 см (проекцией этой стороны на большую сторону треугольника):
х = √((√7)²+4²) = √(7+16) = √23 см ≈ 4,8 см.
ответ: √23 см ≈ 4,8 см.