Если соединить центр окружности с вершинами А, В и С, то получим три равнобедренных треугольника.
1) прямоугольный с углом 90° при вершине О.
2) тупоугольный, углы при основании ВС равны по 15°. Центральный угол равен
180-2*15=150°
2)тупоугольный АОВ
Центральный угол в треугольнике АОВ равен
360=90-150=120 °
АВ отрезком, равным расстоянию от О до АВ, делится пополам.
угол АВО, в образовавшемся треугольнике при вершине В, равен 30°
Радиус в этом треугольнике - его гипотенуза.
Гипотенуза вдвое больше катета, противолежащего углу 30°
Она равна 2*6=12 см
Радиус окружности равен 12 см.
Синус-отношение противолежащего катета к гипотенузе.
Можно найти косинус ВАС=6/10=0.6
По тригонометрическому тождеству: sin^2a+cos^2a=1
sin^2a=1-cos^2a
sin^2a=1-0.36=0.64
sin a= 0.8