Вертикальная башня высота 27√3м из точки F на поверхности земли под углом 60°. Найдите расстояния от точки F до основания башни и до самой высокой точки башни
Т.к. <OAF=<OCF, то треугольник AOC - равнобедренный, значит AO=OC, OF - не только медиана, но и высота и биссектриса. Т.к. OF лежит на прямой BF, то BF - тоже высота, биссектриса и медиана, а значит треугольник ABC - также равнобедренный, значит AB=BC. Т.к. расстояние до отрезка - есть высота, проведенная к нему, то OF=5см. Т.к. <ABC-равнобедренный, то высоты CH и CN равны. А т.к. треугольники AOF и FOC равны(AO=OC, AF=FC, OF-общ. сторона), то HO=ON. <HOB=<BON=<AOF=<FOC, т.к. они вертикальные. Т.к. <BHO=<ONB=90 градусов, HO=ON, <HOB=<BON, то треугольники HBO и OBN равны, значит OH=8см=ON ответ: ON=8см.
В равнобедренном треугольнике MNK с основанием MK, равным 10 см , MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM. Сделаем рисунок. АК:КN=1:3 Пусть коэффициент этого отношения будет х. Так как NK=20=х+3х=4x, AK=20:4=5см Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM. Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3 Cледовательно, МК:АВ=4:3 10:АВ=4:3 4АВ=30 АВ=7,5 см В параллелограмме АВМС противоположные стороны равны. ВМ=АК=АС=5 см МС=7,5 см Треугольник АСК - равнобедренный. Найдем по т. Пифагора его высоту АН. КС=МК-МС=10-7,5=2,5 см НК=1,25 см АН²= (АК²-НК²)=(5²-1,25²)=23,4375 Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора: АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см
ответ: ON=8см.