ответ:Решение.
а) Обозначим буквой E точку пересечения отрезков MK и AB. Углы ∠ALB и ∠LAD равны, как накрест лежащие углы; аналогично ∠CLD = ∠ADL, как накрест лежащие. Отсюда получаем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть треугольники ABL и CLD равнобедренные (AB = BL, CL = CD). Тогда биссектрисы этих треугольников BM и CK являются также высотами и медианами. Значит, точки M и K являются серединами сторон AL и DL соответственно. Отсюда следует, что отрезок MK является средней линией треугольника ALD. Значит, MK || AD.
Теперь если рассмотреть треугольник ABL, получаем, что отрезок EM параллелен стороне BL и исходит из середины стороны AL. Отсюда следует, что EM является средней линией этого треугольника, а значит точка E — середина стороны AB. Что и требовалось доказать.
б) Рассмотрим 4-угольник MLKN. Из предыдущего пункта получили, что ∠M = 90°, ∠K = 90°, откуда следует, что
То есть у данного 4-угольника суммы противоположных углов дают , откуда следует, что вокруг него можно описать окружность. Соединим точки N и L (пересечение с MK в точке F) — получим 2 прямоугольных треугольника NML и NKL. Тогда центр описанной окружности лежит на середине общей гипотенузы NL.
Теперь заметим, что треугольники MFL и NFK подобны по 2 углам (∠MFL = ∠NFK, как вертикальные; ∠MLF = ∠NKF, как вписанные углы, опирающиеся на одну и ту же дугу MN). Тогда
Аналогично треугольники NMF и KFL подобны по 2 углам (∠NFM = ∠KFL, как вертикальные; ∠MNF = ∠FKL, как вписанные углы, опирающиеся на одну и ту же дугу ML). Тогда
Поделим соотношения друг на друга:
Из подобия треугольников NLC и NFK (по 3-м углам) получим, что Аналогично из подобия треугольников NLB и NFM получим, что , откуда следует:
Окончательно получаем, что
ответ: 5 : 14.
Объяснение:
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
Остроугольный - градусная мера каждого из углов < 90 градусов
Прямоугольный - градусная мера одного из углов = 90 градусов
Тупоугольный - градусная мера одного из углов > 90 градусов