abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
Чтобы решить эту задачу, нам нужно разобраться с определением вектора и его свойствами.
Вектор - это направленный отрезок, который характеризуется длиной и направлением (указывается стрелкой). В нашем случае, вектор x→ будет начинаться в одной из вершин параллелепипеда и заканчиваться в другой вершине параллелепипеда.
Чтобы найти вектор x→, нам нужно указать начало и конец вектора. В данном случае, началом вектора может быть любая вершина параллелепипеда, а концом - другая вершина параллелепипеда.
Для решения данной задачи, нам необходимо уточнить, какие вершины параллелепипеда даны в условии. Также, нам нужно определить, по какой из сторон параллелепипеда должен проходить вектор x→.
Пожалуйста, уточните, какие вершины параллелепипеда даны в условии и по какой стороне параллелепипеда должен проходить вектор x→.
abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
ответ: de=6