4. Знайти дуги, на які вершини рівнобедреного трикутника поділяють описане навколо нього коло, якщо кут між бічними сторонами трикутника дорівнює 45°.
Если два голубя вылетели и прилетели одновременно, с одинаковой скоростью, то расстояние от верха дома и от вершины столба до тачки встречи одинаковое.
Получается два прямоугольных треугольника с одинаковыми гипотенузами. Обозначаем расстояние от основания дома до места встречи - х, расстояние от основания фонаря до места встречи - у. Составляем систему уравнений.
Решай по этому примеру посмотри и поймёшь Сделаем к задаче рисунок. Обозначим точку пересечения биссектрис Δ АВС ( в котором ∠ С равен 61°) буквой М. Рассмотрим треугольник АВМ.∠ МАВ = ½ ∠ ВАС, ∠ АВМ = ½ ∠ АВС, тогда ∠ АМВ =180° -½ (∠ АВС + ∠ ВАС). Острый угол между биссектрисами на рисунке обозначен ɣ. Угол ɣ смежный с углом АМВ, следовательно, ɣ = ½ (∠ АВС + ∠ ВАС). Поскольку ∠С треугольника АВС =61°, то ∠ АВС + ∠ ВАС = 119°. Тогда ɣ =½ (∠ АВС + ∠ ВАС) = 119° : 2 = 59,5° ответ: 59,5° если не нравится то можешь не решать я привёл пример.
Объяснение:
Если два голубя вылетели и прилетели одновременно, с одинаковой скоростью, то расстояние от верха дома и от вершины столба до тачки встречи одинаковое.
Получается два прямоугольных треугольника с одинаковыми гипотенузами. Обозначаем расстояние от основания дома до места встречи - х, расстояние от основания фонаря до места встречи - у. Составляем систему уравнений.
12²+х²=5²+у²
х+у=17 ⇒ х=17-у - подставляем в первое уравнение;
12²+(17-у)²=5²+у²
12²+17²-34у+у²=5²+у²
34у=12²+17²-5²=408
у=408/34=12 м - расстояние от фонаря;
х=17-12=5 м - расстояние от дома.