30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Дано: ABCD - ромб
AB = 10
<A = 120
Найти: AC, BD = ?
Точка O - пересечение диагоналей AC и BD
Треугольник ABD - р/б (AB=AD т.к ABCD ромб) => AO - биссектриса, высота и медиана.
<BAO = 60 т.к AO - биссектриса
Треугольник ABO - прямоугольный, <ABO = 90-60 = 30
Напротив угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы AB => AO = 5
т.к ABCD - ромб, его диагонали делятся точкой пересечения пополам => AO=OC = 5 => AC = 2AO = 10
Треугольник ABC - равносторонний (AB=BC=AC) => <B = 60 => <OBC = 30
В треугольнике BOC - прямоугольном BC - гипотенуза = 10, катет OC = 5, найдем сторону BO по теореме Пифагора:
BO² = BC²-OC²
BO² = 10²-5²
BO² = (10-5)(10+5)
BO² = 5*15 = 75
BO = √75
BD = 2√75
BD = 2*√5*5*3
BD = 10√3
ответ: AC = 10 см; BD = 10√3 см
Объяснение: