треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.
Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)
В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)
А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.
Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.
Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.
Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)
В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)
А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.
Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.
Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.
AD<BC