Основанием прямоугольного параллелепипеда служит параллелограмм со сторонами 3 см и 5 см. острый угол параллелограмма равен 60 градусам. площадь большего диагонального сечения равна 63 см2. найти площадь полной поверхности параллелепипеда
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
проведём диагональное сечение! наибольшее будет проходить через острые углы параллелограмма!
в сечении получился прямоугольник, так как параллелепипед прямой по условию!
длина сечения - диагональ оснгования, а ширина - высота параллелепипеда!
АС - диагональ!
найдём ее из треугольника АСД через теорему косинусов!
АС^2=AD^2+DC^2-2AD*DC*COSa
a=(360-120)/2=120
AC^2=25+9-2*5*3*(-sin30)
AC^2=34+15=49
AC=7
CC1=S/AC=63/7=9
S=2So+2S1+2S2
проведём высоту основания! она отсечёт прямоугольный треугольник с гипотинузой 3 и острым углом 60!
h=AB*sin60=3sqrt3/2
So=3sqrt3/2 * 5=15sqrt3/2
S1=3*9=27
S2=5*9=45
S= 30sqrt3/2+54+90=30sqrt3/2 + 144=(30sqrt3+288)/2