По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
60 см
Объяснение:
Дана прямоугольная трапеция, BC - малое основание,AD- большое основание, <A=<B = 90, <D = 30
Радиус вписанной окр-ти по т.Пифагора
r = √(13^2 - 12^2) = 5
Проведем из точки C к AD высоту CH = AB = 2r = 10
Тр-к CDH - прямоугольный
CD = CH/sin30 = 10/0,5 = 20
HD = CHcos30 = 5√3
BC = AH = x
AD = AH + HD = x + 5√3
p = P/2 = (BC + AB + CD + AD)/2 = (x + 10 + 20 + x + 5√3)/2 = x + 15 + 2,5√3
S = p*r = (x + 15 + 2,5√3)*5
S = (BC + AD)/2 * AB = (x + x + 5√3)/2 * 10 = (2x + 5√3)*5
Приравняем
(x + 15 + 2,5√3)*5 = (2x + 5√3)*5 |:5
x + 15 + 2,5√3 = 2x + 5√3
х = 15 - 2,5√3
P = 2p = 2*(x + 15 + 2,5√3) = 2* (15 - 2,5√3 + 15 + 2,5√3) = 60 см