построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
В треугольнике FK = 1,5 а FM = 2,5, не наоборот, так как FM - гипотенуза, она не может быть больше катета FK
Смотри, находим по теореме Пифагора катет MK
Синус - отношение противолежащего катета к гипоетнузе
Косинус - отношение прилежащего катета к гипотенузе
Тангенс - отношение противолежащего катета к прилежащему
Из этого мы получаем, что
sin F = MK/FM = 2/2,5 = 0,8
sin M = FK/FM = 1,5/2,5 = 0,6
cos F = FK/FM = 1,5/2,5 = 0,6
cos M = MK/FM = 2/25 = 0,8
tg F = MK/FK = 2/1,5 = 4/3
tg M = FK/MK = 1,5/2 = 0,75