1 задача. чертим треугольник со сторонами 5, 12, 8.
пусть АБ=5, БЦ=12, АЦ=8.
середина стороны АБ точка Е, середина стороны БЦ точка М, середина стороны АЦ точка Н,
соединяем между собой точки середин сторон ( т е Е-М-Н) у нас получается еще 1 треуголник.
по получившемуся рисуунку замечаем, что прямые ЕМ, МН, НЕ явл средними линиями треугольника АБЦ, так как проходят через 2 середины сторон и соответственно паралельны основаниям (сторонам) ЕМ || АЦ, МН || АБ, НЕ || БЦ
средняя линия треугольника равна половине основания (стороны) которой параллельна, т е
ЕМ=1/2 АЦ=1/2 * 8=4
МН=1/2 АБ=1/2*5=2,5
НЕ=1/2 БЦ=1/2*12=6
значит периметр треуголника ЕМН
Р(емн)=4+2,5+6=12,5
1 задача. чертим треугольник со сторонами 5, 12, 8.
пусть АБ=5, БЦ=12, АЦ=8.
середина стороны АБ точка Е, середина стороны БЦ точка М, середина стороны АЦ точка Н,
соединяем между собой точки середин сторон ( т е Е-М-Н) у нас получается еще 1 треуголник.
по получившемуся рисуунку замечаем, что прямые ЕМ, МН, НЕ явл средними линиями треугольника АБЦ, так как проходят через 2 середины сторон и соответственно паралельны основаниям (сторонам) ЕМ || АЦ, МН || АБ, НЕ || БЦ
средняя линия треугольника равна половине основания (стороны) которой параллельна, т е
ЕМ=1/2 АЦ=1/2 * 8=4
МН=1/2 АБ=1/2*5=2,5
НЕ=1/2 БЦ=1/2*12=6
значит периметр треуголника ЕМН
Р(емн)=4+2,5+6=12,5
ответ: 60 ед²
Решение
Дано:ΔАВС, АС=СВ=13, АВ=24
Найти :S
Решение: Проведём высоту СС1 ⊥ к основанию АВ. Высота в равнобедренном треугольнике совпадает с медианой, значит АС1=С1В=АВ/2=12
Рассмотрим ΔАСС1, С1=90°.По теореме Пифагора
АС²=АС1²+СС1²
S=1/2 АВ*СС1=1/2 *24*5=12*5=60