1) если внешний угол В равен 138, то соответственно внутренний будет равен 42 т.к(180-138=42), это равнобедренный треугольник,значи 2 стороны равны, и два угла тоже будут равны, отсюда, 180-42/2=69, угол С равен 69
2) нарисуй равнобедренную трапецию АВСД( у нее боковые стороны равны) проведи высоту из угла В, назовем эту точку О, и проведем еще одну высоту из угла С, назовем эту точку К. растояние от точки О до К теперь равно 9, а по скольку это равнобедренная трапеция, то отрезок АО будет равен 3 т.к(15-9/2)...получаем треугольник АВО, угол А=45, отсюда, угол АВОравен тоже 45 градучам, значит это ранвобедренный треугольник, АО=ВО, отсюда высота равна трем.
3) здесь равнобедренный треугольник значит углы А и В равны, отсюда угол С равен 38+38=76, 180-76=104. угол С=104
Дано:
АВСА1В1С1 - прямая призма
АВ = 3 см
АС = 8 см
АА1 = 15 см - высота призмы
Найти:
S(бок) , S(полн) , V.
Решение.
Запишем уравнение теоремы косинусов
a^2 = b^2 + c^2 + 2bc*cos(a)
Рассмотри треушольник АВС. По теореме косинусов имеем
ВС^2 = AC^2 + AB^2 - 2*AC*AB*cos(60) =
= 8^2 + 3^2 - 2*8*3*0,5 =
= 64 + 9 - 24 =
= 49
тогда ВС = 7 см
Площадь боковой поверхности S(бок) прямой призмы
S(бок) = АА1*(АВ + АС + ВС) =
= 15(3 + 8 + 7) =
= 270 см^2
Найдем площадь основания S(осн) как площадь треугольника по двум сторонам и синус угла между ними
S(осн) = 0,5*АВ*АС*sin(60) =
= 0.5*3*8*кор (3)/2 =
= 6*кор (3) см^2
Полщадь полной поверхности S(полн) прямой призмы
S(полн) = S(бок) + S(осн) =
= 270 + 6*кор (3) см^2
Объем V прямой призмы
V = S(осн) *h =
= 6*кор (3)*15 =
= 90*кор (3) см^3
ответ: S(бок) = 270 см^2, S(полн) = 270 + 6*кор (3) см^2, V = 90*кор (3) см^3.