М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
илюха190
илюха190
03.01.2020 14:40 •  Геометрия

Смежные стороны параллелограмма равны 46 см и 24 см, а острый угол равен 30°. Найдите площадь

👇
Открыть все ответы
Ответ:
renat20648643540
renat20648643540
03.01.2020
Из точки к плоскости проведены две наклонных. Длина одной из них равна 4√5, а длина ее проекции - 8 см. Угол между проекциями наклонных равен 60 градусов, а длина отрезка, соединяющего основания наклонных равна 7 см. Найдите длину второй наклонной. 
-----------------------------------
Сделаем рисунок. 
На плоскости получился треугольник.
Обозначим его вершины АВС. 
Точку, удаленную от плоскости и в которой соединяются наклонные,
обозначим К. 
Для того, чтобы найти наклонную КС, нужно знать КВ и ВС, которые являются катетами прямоугольного треугольника КВС ( КВ перпендикулярна к плоскости и проекциям наклонных).
 КВ=√(АК²-АВ²)=√(80-64)=4 см 
В треугольнике АВС проведем высоту АН 
Угол АВН=30 градусов. 
ВН как катет прямоугольного треугольника АВН, противолежащий углу АВН,   равен АВ:2=4см  
= АВ*cos60=8√3):2=4√3  
Из треугольника АНС найдем НС 
НС(АС²-АН²)=√(49-48)=1см
ВС=ВН+НС=5см
Из прямоугольного треугольника КВС найдем нужную длину наклонной КС.  
КС=√(КВ²+ВС²)=√(16+25)=√41
Сточки к плоскости проведены две похили.довжина одной из них равна 4корень5, а длина ее проекции-8см
4,4(67 оценок)
Ответ:
   Центры окружностей касательных  прямой m в точках А и В лежат на перпендикулярах к этой прямой проведенных в этих точках.
   Проведем окружности касающиеся друг друга в точке С и прямой в точках А и В.  
   Центры этих окружностей лежат на пересечении перпендикуляров от А и В и серединных перпендикуляров АС и ВС. 
   Проведем касательную прямую СО. Она пересекает прямую АВ в точке О.
   По свойству касательных, проведенных из одной точки ОА=ОС и ОС=ОВ. Значит ОА=ОВ и точка О середина АВ. 
  ОС медиана треугольника АВС.
  Если медиана равна половине стороны к которой проведена, то угол этого треугольника прямой и  треугольник - прямоугольный с гипотенузой равной диаметру окружности описанной вокруг него. 
 Следовательно: множество искомых точек - вершины прямоугольных с общей треугольников гипотенузой АВ описанных окружностью с диаметром АВ.
4,4(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ