а) перпендикуляр проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к прямой их пересечения, есть перпендикуляр к другой плоскости.
Верно.
б) Через данную прямую, не перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Неверно. Можно провести единственную плоскость, перпендикулярную данной, так как
в) Через данную прямую, перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Верно.
г) Плоскость и не лежащая в ней прямая, перпендикулярные одной и той же плоскости, параллельны между собой
Верно.
рассм ∆ABD - прямоугольный =>
=> мы замечаем, что катет BD равен половине нашей гипотинузы, AB => по правилу: " катет напротив 30° равен половине гипотинузы", то угл <BAD= 30°
т.к это равнобедренный треугольник, то углы при основании равны, и угл <BCD = <BAD = 30°
Мы нашли 2 угла, но осталось найти угл <ABC
Всем известно, что сумма всех 3-х углов треугольника равна 180°. 2 угла нам известно, осталось найти 3-тий:
30+30+<ABC= 180
<ABC=180-60=120°
ответ: <BAC= 30°
ответ: <BAC= 30°<BCA= 30°
ответ: <BAC= 30°<BCA= 30°<ABC= 120°
Вписанный угол равен 28°
Объяснение:
Задача:
Центральный угол круга на 28° больше угла, вписанного в этот круг, который опирается на ту же дугу. Чему равен вписанный угол?
Пусть вписанный угол равен х, тогда центральный угол, опирающийся на ту же дугу, равен 2х.
По условию
2х - х = 28°
х = 28°