Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле:
bc=b1c1, и am, a1m1 - медианы, то bm=cm=b1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - am=a1m1 по условию; - bm=b1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними: - am=a1m1 по условию; - сm=c1m1 как было показано выше; - углы amc и a1m1c1 равны как доказано выше. У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
1) 4; 2) 13; 3) P=28 S=48; 4) 2
Объяснение:
1) а²+3²=5²
а²=25-9=16
а=4
2) 12²+5²=а²
а²=144+25=169
а=13
3) AD²=BD²-AB²
AD²=100-36=64
AD=8
P=(8+6)*2=28
S=8*6=48
4) AB=BC
Пусть AB будет х, тогда AB=BC=x
x²+x²=(2✓2)²
2x²=8
x²=4
x=2