2* Lisez et dites si c'est vrai ou faux. 1. Dilchod et Bobour sont nouveaux dans cette école. 2. Anvar n'étudie pas dans cette école moderne. 3. Anvar présente son école à ses amis. 4. La salle informatique est au premier étage. 5. Cette école n'a pas de salle audiovisuelle. 6. On fait du français dans la salle audiovisuelle. И с переводом текста Текст который я закрепила.
1) треугольник прямоугольный, т.к. сумма углов треугольника 180 градусов, 180-(25+65)=90-третий угол 2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол 3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза 4) 9.7-1.5=8.2 5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см 6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35 2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72 7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30, рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14, рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14 АС= СN+ АN=7+14=21
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол
3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза
4) 9.7-1.5=8.2
5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см
6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35
2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72
7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30,
рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14,
рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14
АС= СN+ АN=7+14=21