Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
1. Пусть есть две ПРОИЗВОЛЬНЫЕ касающиеся окружности радиусов r и R, и к ним проведена общая внешняя касательная. Если провести радиусы в точки касания и линию центров, то получится прямоугольная трапеция с основаниями r и R и боковой стороной r + R;откуда длину касательной d (между точками касания) легко найти (r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r); 2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9; причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей. d = d1 + d2; 2√(R*x) + 2√(r*x) = 2*√(R*r); x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;
AD=11 см
Угол ABD=28
Угол ABS=56