BJSV80x3 Завдання 2 Проведіть дві перпендикулярні прямі АВ і СD. Позначте точку перетину прямих точкою О. Між сторонами кута AOC проведіть промінь ОК. Кут АОС дорівнює 29°. Знайдіть величину кутів АОК та KOD.
Пусть ΔАВС- равнобедренный с вершиной А и углами при основании В и С. ВМ- высота, проведенная в боковой стороне.
Высота, проведенная к боковой стороне образует ∠90°. рассмотрим ΔВМС. он является прямоугольным, так как ∠ВМС - прямой. Так, как угол при вершине =120°, то каждый из углов при основании равен 30°. Катет прямоугольного треугольника, который лежит напротив острого угла 30° равен половине гипотенузы.
Катет ВМ (высота) - 13 см, значит гипотенуза (основание) ВС = 13×2 = 26 см.
Рассмотрим треугольник NKM: NK = 0.5 NM (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы) NK=0.5 × 36 = 18
Рассмотрим треугольник KPM: угол NPK = угол KPM = 90° угол PKM = 180° - 90° - 30° = 60° (т. к. сумма углов треугольника равна 180°)
Рассмотрим треугольник NPK: угол NKP = угол NKM - угол PKM угол NKP = 90° - 60° = 30° PN = 0.5 NK (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы) PN = 0.5 × 18 = 9
ответ: 26 см
Объяснение:
Пусть ΔАВС- равнобедренный с вершиной А и углами при основании В и С. ВМ- высота, проведенная в боковой стороне.
Высота, проведенная к боковой стороне образует ∠90°. рассмотрим ΔВМС. он является прямоугольным, так как ∠ВМС - прямой. Так, как угол при вершине =120°, то каждый из углов при основании равен 30°. Катет прямоугольного треугольника, который лежит напротив острого угла 30° равен половине гипотенузы.
Катет ВМ (высота) - 13 см, значит гипотенуза (основание) ВС = 13×2 = 26 см.