ответ:2.5.3 в прямоугольном треугольнике cosA = sinB или cosB=sinA. у нас есть Cos A 173/371. значит sinB будет 173/371
2.5.4 Синус - отношение противолежащего катета к гипотенузе. То получаем, что катет BC=4√11, а гипотенуза = 15; По т. Пифагора найдем катет AC= √225-176=7
то sinB=7/15
2.5.5 Косинус-отношение прилежащего катета на гипотенузу, косинус угла А равен √91\10, значит прилежащий катет, т.е АС=√91, а гипотенуза=10.
По теореме Пифагора находим катет ВС:
ВС²=ВА²-СА²
ВС²=100-91=9
ВС=3
Косинус-отношение прилежащего катета на гипотенузу, значит косинусом угла В будет служить отношение ВС\ВА=3\10
ответ: 0,3
2.5.6 tg A = sin A/ cos A
Применим основное тригонометрическое тождество:
sin A=√(1-cos²A)=√(1-(√2/4)²)= √(1-2/16)=√(1-1/8)=√(7/8)
Тогда tg A = √(7/8):(√2/4)= √(7/8)·4/√2=4·√(7/16)=4·¼·√7=√7.
ответ: √7.
2.5.7 sina=3(√10)/(√10)²=3/√10
cosa=√(1-sin²x)=√(1-9/10)=√(1/10)=1/√10
tga=sina/cosa=(3/√10)/(1/√10)=(3/√10)*√10=3
Сумма углов тр-ка равна 180 гр, значит уг.В = 180 -60 - 60 = 60гр.
Все углы тр-ка одинаковые, значит тр-к АВС - равносторонний,
и АВ =АС =ВС = 12,8см
Найдём высоту тр-ка АВС: h = AB·sin 60 = 12.8 · 0.5√3 = 6.4√3 cм
Площадь тр-ка АВС S = 0.5 AC· h = 0.5 · 12.8 · 6.4√3 = 40.96√3 cм²
ответ: 40,96√3 см²
2) Полупериметр тр-ка р = 0,5(5 + 4 +√17) = 4,5 + 0,5√17
р-а = 4,5 + 0,5√17 - 5 = -0,5 + 0,5√17
р - b = 4,5 + 0,5√17 - 4 = 0,5 + 0,5√17
р - с = 4,5 +0,5√17 - √17 = 4,5-0,5√17
Площадь тр-ка равна S = √(p - a)(p - b)(p - c)/p =
= √(-0.5 + 0.5√17)(0.5 + 0.5√17)(4.5 - 0.5√17)/ (4.5+ 0.5√17)
= √(0.25·17 - 0.25)(4.5² - 0.25·17)/(4.5 + 0.5√17)² =
= √(0.25·16·16)/(4.5 + 0.5√17)² = 8/(4.5 + 0.5√17
ответ: 8/(4,5 + 0,5√17)