1)ответ:
V = 5√3/6 ед³.
Sбок = 144 ед².
Объяснение:
Судя по тому, что ∠АВС= 120°, параллелепипед не прямоугольный, а прямой. Это "две большие разницы".
Итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной ВС = 5 см, диагональю АС=7см и углом АВС = 120°. По теореме косинусов попробуем найти сторону АВ.
АС² =АВ²+ВС² - 2·АВ·ВС·Cos120. Cos120 = -Cos60 = - 1/2.
49 = AB²+25 - 2·AB·5·(-1/2) =>
АВ²+5·АВ -24 =0 => AB = 3cм
So = AB·BC·Sin120 = 3·5·√3/2.
V = So·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
Sбок = Р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
2)Обозначим радиус основания конуса R, высоту Н.
По заданию угол, тангенс которого равен Н/R, равен 30 градусов.
Н/R = tg30° = √3/3.
Отсюда Н = R√3/3 см.
Площадь сечения S = (1/2)*2R*H =RH = R*(R√3/3) = R²√3/3 см².
Приравняем по заданию: R²√3/3 = 9√3 см².
R² = 9*3, а R = 3√3 см.
Высота Н = R√3/3 = (3√3)*(√3/3) = 3 см.
Проведем диагонали АС и ВМ.
Рассмотрим образовавшийся ΔАВС ( АВ=5см; ВС=8 см; <В=120°)
по теореме косинусов:
АС^2=АВ^2 + ВС^2 - 2*АВ*ВС*cos(AC^2=5^2+8^2-2*5*8*cos(120°)
AC^2=25+64-80*(1/2)
AC^2=89-40
AC^2=49
AC=√49
AC=7 см
Рассмотрим ΔВСМ ( СМ=5см; ВС=8 см; )
<С=180°-<В (по свойству параллелограмма)
<С=180°-60°=120°
По теореме косинусов:
ВМ^2=ВС^2+СМ^2-2*ВС*СМ*cos(BM^2= 8^2+5^2-2*8*5*cos(120°)
По правилу приведения углов:
cos(120°)=cos(180°-60°)=-cos120°=(-1/2)
ВМ^2=64+25-80*(-1/2)
ВМ^2=89+40
ВМ^2=129
ВМ=√129 см
ответ: АС=7см; ВМ=√129 см
Вроде так