№1. Т.к. угол BAD= углу BCM, а BC параллельно AD, то ABCM - параллелограмм. Тогда AB=CM=2, BC=AM=3.
№2 Т.к. нам даны углы в 90 градусов, то данная нам трапеция прямоугольная. Опустим высоту СМ из точки С. Тогда АВСМ - прямоугольник. СМ=АВ=8, ВС=АМ=4. По теореме Пифагора найдем CD из треугольника CMD, получаем MD=6. Значит AD=10. Площать ACD= половине высоты на сторону, к которой проведена высота, значит площадь ACD равна 40. А площать трапеции равна половине суммы оснований и умножить на высоту, площадь трапеции равна 56.
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
№1. Т.к. угол BAD= углу BCM, а BC параллельно AD, то ABCM - параллелограмм. Тогда AB=CM=2, BC=AM=3.
№2 Т.к. нам даны углы в 90 градусов, то данная нам трапеция прямоугольная. Опустим высоту СМ из точки С. Тогда АВСМ - прямоугольник. СМ=АВ=8, ВС=АМ=4. По теореме Пифагора найдем CD из треугольника CMD, получаем MD=6. Значит AD=10. Площать ACD= половине высоты на сторону, к которой проведена высота, значит площадь ACD равна 40. А площать трапеции равна половине суммы оснований и умножить на высоту, площадь трапеции равна 56.