Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
пусть треугольник ABC. AB=10, AC=17, BC=21. Больший угол против большой стороны, значит перпендикуляр из угла А. АН=15.Опустим из т А перпендикуляр АМ, тогда НМ тоже перпендикуляр по теореме о трех перпендикуляров. Значит нам нужно найти АМ и НМ. Ам высота в АВС, значит АМ=2*S(ABC)/BC
S(ABC) по теореме Герона.S(ABC)=84
АМ=2*84/21=8
тогда НМ по теореме Пифагора НМ=(225+64)^1/2=17
ответ: 8 и 17.