М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кошка3310
кошка3310
27.09.2022 05:32 •  Геометрия

Чему равен больший угол равнобедренной трапеции если известно что разность противолежащих углов равна 84 градуса ? ответ дайте в градусах( подробно можно? )

👇
Ответ:
emil132
emil132
27.09.2022

Дано:
Угол С - угол А = 84 градусов
АВ = СD
Найти угол В 
Решение:
Угол С - Угол А = 84 градуса - по условию
Пусть угол D = углу А = х;)
                                            )    Трапеция равносторонняя
Пусть угол В = углу С = у;)  
х + у + х + у = 360 градусов - сумма внутренних углов трапеции,
х + у = 180 градусов 
( у - х = 84
( х + у = 180
Решив эту систему, найдем:
Угол В = углу С = у и равно 132 градуса
ответ: 132 градуса 

4,8(13 оценок)
Открыть все ответы
Ответ:
аня2934
аня2934
27.09.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,8(58 оценок)
Ответ:
dizzone
dizzone
27.09.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,7(100 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ