1. Одна сторона = х см, другая сторона = 2х см х+х+2х+2х=48 6х=48 х=8 8 см одна сторона 8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам. Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК. Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой. Значит, треугольник АВК равнобедренный, т.к. углы при основании равны. Значит, АВ=ВК=7 см
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°