Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;
2 из них - с высотой 1;
грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.
проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).
сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);
ответ S = 4*1+4*1+4*2 = 16
1) незняю так как учусь в 7 классе. Но второй вроде так.Отрезок, соединяющий середину высоты пирамиды с серединой апофемы - средняя линия в треугольнике, образованном высотой и апофемой. Значит проекция апофемы на основание равна 2в. Но так как пирамида правильная, мы тут же получаем, что сторона основания равна 4m.
Рассмотрим сечение, проходящее через высоту, перпендикулярно одной из сторон основания. В этом сечении получим прямоугольный треугольник с катетами 2в и h и углом напротив h равным a. h=2в*tg a
Объём равен (4в)^2*(2вtg a)/3=32/3 в^3 tg a