Вычислите: 1) площадь боковой поверхности усечённого конуса. 2) площадь полной поверхности усечённого конуса, Если радиусы оснований усечённого конуса соответственно равны 6 см и 4 см, образующая равна 19 см.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
1) И прямая, и плоскость не имеют строгих определений в геометрии, а определяются через их свойства. У прямой нет "ширины" и "высоты", однако она простирается бесконечно в обе стороны. В строгом смысле слова, прямая - это одномерный аналог пространства. Плоскость имеет уже два бесконечных измерения - "длину" и "ширину", это двумерный аналог пространства.
2) а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек) б) нет в) да
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -