Пусть дана пирамида РАВС. РВ - её высота, АС - гипотенуза основания.
Гипотенуза основания равна 12√2 см.
Высота из точки В на АС в прямоугольном равнобедренном треугольнике является медианой. Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы. То есть она равна 6√2 см.
Находим высоту боковой грани АРС:
РК = √(9² + (6√2)²) = √(81 + 72) = √153 = (3√17) см.
Находим площадь боковой поверхности.
Sбок = 2*(1/2)*9*12 + (1/2)*12√2*3√17 = (108 + 18√34) см².
Площадь основания So = (1/2)*12² = 72 см².
Площадь полной поверхности равна:
S = So + Sбок = 72 + 108 + 18√34 = (180 + 18√34) см².
СD=10 см.
Диагональ АС является гипотенузой прямоугольного треугольника АВС, у которого катеты АВ и ВС.
Диагональ BD является гипотенузой прямоугольного треугольника АВD, у которого катеты АВ и AD.
Так катет ВС меньше катета AD, то и гипотенуза АС меньше гипотенузы BD.
АС=СD=10 cм.
Треугольник АСD - равнобедренный. Высота СК является одновременно и медианой.
СК=АВ=6 см
По теореме Пифагора из треугольника АСК:
АК²=АС²-СК²=10²-6²=100-36=64=8²
АК=8
АD=2·AK=16 см
BC=AK=8 cм
О т в е т. 8 см и 16 см.