Точка касания с гипотенузой ВС является точка Е (СЕ=2, ВЕ=3), с катетом АС точка К, с катетом АВ точка М. Угол А прямой.
СЕ=СК=2, длины отрезков выходящих из одной вершины до точек касания к окружности равны, по этому же правилу
ВЕ=ВМ=3
Центр окружности О, r-радиус окружности. ОК=ОМ=r и ОК перепендик АС, ОМ перпендик АВ. АМОК-квадрат и АМ=АК=r
Тогда АС=r+2, АВ=r+3, ВС=2+3=5 по теореме Пифагора
ВС^2=АС^2+АВ^2
5^2=(r+2)^2+(r+3)^2
r^2+4r+4+ r^2+6r+9=25
2r^2+10r+13=25
2r^2+10r-12=0 сократим все на 2
r^2+5r-6=0
найдем дискрим. Д=25+24=49
корень из Д=7
r1=(-5+7)/2
r1=1
r2=(-5-7)/2=-6(радиус не может быть отрицательным)
Радиус вписан.окружности равен r=1см
один из острых углов через а , второй тогда 90-а.
биссектрисса делит треугольник на два.
теорема синусов для обоих треугольников.
х/sin a = 15/ sin 45.
x/ sin(90-a) = 20/ sin 45
sin 90-a= cos a
откуда
15 sin a = 20 cos a
tg a = 4/3
гипотенуза 35 катеты 28 и 21
пифагоров треугольник 3 4 5 с коэффициентом подобия 7.
опустим высоту на гипотенузу.
если tg a = 4/3 , то sin a = 4/5 cos a = 3/5.
опять же из пифагорова треугольника.
гипотенуза поделиться высотой на отрезки
21 * cos a = 12.6
28* cos(90-a)= 28* sin a= 22.4