М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kek129
kek129
17.02.2021 11:21 •  Геометрия

BM – высота равнобедренного ∆ABC – равна 6 см, основание AC = 16 см, BC = 10 см. Найдите периметр ∆BMC.

👇
Ответ:
нюша305
нюша305
17.02.2021

ответ:24 сантиметра

Объяснение:

4,4(10 оценок)
Открыть все ответы
Ответ:
iiklyminecraft
iiklyminecraft
17.02.2021

ответ:8см

Объяснение:

За теоремой косинусов,

AB^2=AO^2+BO^2-2×AO×BO×cos/_AOB

AB^2=64+64-2×8×8×cos60°

AB^2=128-128×0.5

AB^2=64

AB>0, AB=8см.

^^^Это как один из вариантов решения. Можно не использовать теоремы косинусов, а действовать вот так: сначала доказать, что треугольник, так как две из его сторон равны(радиусы), он является равнобедренным т реугольником, а значит углы при основе равны. Угол при вершине известен, сума углов треугольника=180°, отсюда

2х+60=180

2х=120

х=60, а это значит что все углы треугольника=60°, а значит он равносторонний. Отсюда AO=OB=r(радиус)=AB=8см. Извиняюсь за слишком краткое описание второго метода, но первый более практичный))

4,6(62 оценок)
Ответ:
Препод007
Препод007
17.02.2021

Решение и подробное объяснение:

 

1) Стороны AB и AC правильного треугольника ABC лежат в двух перпендикулярных плоскостях. Найти площадь треугольника ABC, если точки B и C удалены от прямой пересечений плоскостей на 3√2

 

Формула площади правильного треугольника

S=(а²√3):4
Рассмотрим рис.№1
Расстояние от В и С до прямой пересечений плоскостей - это проекции сторон АВ и АС на эту прямую.
Сторону треугольника найдем из равнобедренного прямоугольного треугольника ВОС
Пусть АВ=ВС=АС=а
а²=(ВО²+ОС²)=(3√2)²+(3√2)²=36
а=6
S=(а²√3):4=36√3):4=9√3
------------


2) Концы отрезка AB лежат в двух перпендикулярных плоскостях и удалены от прямой их пересечения на 6 и 7. Найти длину отрезка AB, если расстояние между основаниями перпендикуляров, проведенных из точек A и B к прямой пересечения, равны 6.

 

Рассмотрим рисунок №2.


АМ = расстояние от А до прямой пересечения плоскостей.
ВН - расстояние от В до прямой пересечения плоскостей.
Угол АНВ - прямой по теореме о трех перпендикулярах:

 

Если прямая (ВН), проведенная на плоскости через основание наклонной(АН), перпендикулярна её проекции (МН), то она перпендикулярна и наклонной.


В треугольнике АМВ отрезок АМ, лежащий в плоскости α, перпендикулярен линии пересечения плоскостей α и β, потому перпендикулярен ВМ, лежащему в плоскости β

ВН перпендикулярна НМ по условию ( расстояние от В до линии пересечения).
Найдем из треугольника ВМН сторону ВМ по тепореме Пифагора:
ВМ²=МН²+ВН²=72
Из треугольника АВМ найдем наклонную АВ:
АВ²=АМ²+ВМ²=49+72=121
АВ=√121=11

----------------
Можно АВ найти из треугольника АНВ:
АН=√(МН²+АМ²)=√(36+49)=√85
АВ=√(85+36)=√121=11


Буду рад, если . лучшее решение, если с рисуночком и подробным решение двух . 1) стороны ab и ac пра
4,6(77 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ