Углы у равнобедренной трапеции одинаковы по 45°.
Проведем из вершины трапеции две высоты на большее основание.
Расстояние между основаниями равно меньшему основанию трапеции, то есть 25 см.
Большее основание по условию 41 см.
41-25=16 см
16:2=8 см - Сторона прямоугольного треугольника, образованного при проведении высоты.
В этом треугольнике угол 45°. значит и второй угол прямоугольного треугольника 45°. (180°-90°-45°= 45°).
Так как углы при основаниях треугольника равны, то треугольник равнобедренный.
Высота совпадает с боковой стороной и равняется тоже 8 см.
ответ: высота трапеции 8 см
что бы найти площадь равнобедренного треугольника нужна высота. s=ah/2
чертим высоту вн. а высота в равнобедренном треугольнике является медианой и высотой, и делит основание на 2 равные части. значит ан=нс=24: 2=12
нам нужной найти высоту вн
вн можно найти по теореме пифагора, ведь треугольник авн прямоугольный т.к вн является ещё и высотой
вн= корень из ав ²-ан²
вн=корень из 144-169=25 корень из 25 =5
площадь треугольника равна ан/2
а=ан
н=вн
s=5*12/2=30 это площадь треугольника авн а треугольник внс ему равен по 3-м сторонам.
1)ав=вс=13
2)ан=сн=12
3)вн- общая =>
треугольник равны, значит и площади их равны. а площадь треугольника авс=авн+внс
авс=60
ответ : 60 см²