На сторонах угла MNE отложены равные отрезки NK и ND. Биссектриса угла MNE пересекает отрезок KD в точке С. Перечислите равные элементы треугольников DNC и KNC и определите, по какому признаку равны эти треугольники.
Высота проведенная из вершины тупого угла делит основание равнобедренной трапеции на отрезки, больщий из которых равен полусумме оснований, то есть средней линии трапеции (свойство). Острый угол трапеции равен 45°, значит в прямоугольном треугольнике, образованном высотой, меньшим отрезком основания, равным 14см (катеты) и боковой стороной (гипотенуза), катеты равны. Итак, высота трапеции равна 14см, а ее средняя линия равна 34см. Площадь трапеции равна произведению средней линии на высоту, то есть S=14*34=476 см². Это ответ.
1) Любые две плоскости имеют общую прямую, на которой лежат все общие точки этих плоскостей. НЕ ВЕРНО У пары параллельных плоскостей нет общих точек, и соответственно, общей прямой.
2) Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости. ВЕРНО
3) Через любую точку пространства, не лежащую в данной плоскости, проходит бесконечно много прямых, параллельных данной плоскости. ВЕРНО Через эту точку можно провести плоскость, параллельную данной, и в ней пучок прямых, каждая из которых будет параллельна данной плоскости.
4) Если в пространстве две прямые перпендикулярны третьей прямой, то эти две прямые параллельны. НЕ ВЕРНО Эти две прямые могут быть скрещивающимися.
Острый угол трапеции равен 45°, значит в прямоугольном треугольнике, образованном высотой, меньшим отрезком основания, равным 14см (катеты) и боковой стороной (гипотенуза), катеты равны.
Итак, высота трапеции равна 14см, а ее средняя линия равна 34см.
Площадь трапеции равна произведению средней линии на высоту, то есть S=14*34=476 см². Это ответ.