4. Периметр - это сумма длин всех сторон. В условии дан параллелограмм. Во всех рисунках смежные стороны отмечены, как равные, но такой параллелограмм уже превращается в ромб. т.е. достаточно найти одну сторону, чтобы ответить на вопрос, чему равен периметр.
4*15=60/м/
5. Так как это ромб, то его диагонали являются биссектрисами внутренних углов. Значит, ∠SКМ =∠SКL=60°, тогда и ∠КSl=∠SlК=60°, ΔSLК имеет равные стороны, т.е. 8м, а периметр 8*4=32/м/
6. QP⊥RM ∠RQP=30°, т.к. острые углы в прямоугольном треугольнике составляют 90°, а против угла в 30°лежит катет RP=6, который равен половине гипотенузы RQ, поэтому RQ=12, а периметр, следовательно, 12*4=48
18.
∪ ALB = 72° => <AOB = 72° =>
x = 90-<AOB = 18°.
20.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
<OAC = 90° => <OAB = <OAC - <BAC => <OAB = 90-40 = 50°
OB == OA => <OAB == <OBA = 50°
<BOA = 180-(50+50) = 80°.
А в 22-ом я пока путаюсь, решу немного позже(сложновато для меня), прости.