М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Rayanachechenka
Rayanachechenka
09.04.2022 00:41 •  Геометрия

решить, за правильный ответ​


решить, за правильный ответ​

👇
Ответ:
Anyablack11
Anyablack11
09.04.2022

Объяснение:

Направления север и запад - катеты прямоугольного треугольника, 3*4=12 км - длина одного катета, 4*4=16 км - длина другого катета. Расстояние между их концами - гипотенуза. По т. Пифагора - √(12²+16²)=20 км - расстояние между туристами через 4 часа.

4,5(76 оценок)
Открыть все ответы
Ответ:
Кириджа114
Кириджа114
09.04.2022

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
4,8(54 оценок)
Ответ:
natochka2001
natochka2001
09.04.2022

20°

Объяснение:

Дано (см. рисунок):

ΔАВС - равнобедренный

AD - биссектриса угла А

BD - биссектриса угла В

∠ADB = 100°  

Найти: ∠С

Решение.

Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.

Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°.  В силу этого α = β = (180-100)/2 = 40°.

Тогда ∠CАВ=∠СВА=2·α=2·40°=80°.  Опять используем свойство:

Сумма внутренних углов треугольника равна 180°.

В силу этого ∠CАВ+∠СВА+∠С=180°. Отсюда

∠C=180°-(∠CАВ+∠СВА)=180°-(80°+80°)=180°-160°=20°.

ответ: 20°


Треугольник abc-равнобедренный с основанием ab биссектрисы углов при основании пересекаются в точке
4,4(25 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ