Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
надеюсь, рисунок сможешь сам сделать, но если надо, то я прикреплю
Объяснение:
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н.
Рассмотрим ∆ CAD и ∆ CBD
АС=СВ и AD=BD по условию; сторона СD- общая.
∆ CAD = ∆ CBD по 3-му признаку равенства треугольников.
Тогда ∠АСD=∠BCD;
∠CDA=∠CDB.
СD- биссектриса углов при вершинах С и D равнобедренных треугольников.
По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒
СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.