Основанием пирамиды dabc является правильный треугольник abc сторона которого = .ребро da перпендикулярно к плоскости авс, а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Надеюсь, ты это все начертила. Рассмотрим треугольник ФВО. Мы знаем, что ВФ=ФО, значит, он равнобедренный. Угол АВС, который здесь ФВО, равен 50-и градусам и является углом при основани, а так как углы при основании в равнобедр. треугольнике равны, то уго ВОФ тоже равен 50-и градусам. Сумма углов треугольника равна 180-и градусам, поэтому угол ВФО равен 180 - (50+50) = 80 градусам. Замечаем, что угол ВФО смежный с углом АФО, значит угол АФО равен 180 - 80 = 100 градусов по свойству смежных углов. Ну, можно было и попроще: угол АФО является внешним углов треугольника ФВО и равен сумме двух углов этого треугольника, не смежных с ним, то есть ФВО и ВОФ, а их сумма равна 100 градусам