1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Пусть х мм - большая сторона,
тогда остальные стороны: (х - 3); (х - 4); (х - 5) мм.
х + (х - 3) + (х - 4) + (х - 5) = 80
х + х - 3 + х - 4 + х - 5 = 80
4х - 12 = 80
4х = 80 + 12
4х = 92
х = 92 : 4
х = 23 (мм) - первая сторона.
23 - 3 = 20 (мм) - вторая сторона.
23 - 4 = 19 (мм) - третья сторона.
23 - 5 = 18 (мм) - четвертая сторона.
ответ: 23 мм; 20 мм; 19 мм; 18 мм.
2) Сумма углов четырехугольника равна 360°.
∠A = ∠B = ∠C = (360° - 135°) : 3 = 225° : 3 = 75°.
3) Сумма углов четырехугольника равна 360°.
1 + 2 + 4 + 5 = 12 - частей.
360° : 12 = 30° - 1 часть, соответственно, один из углов.
30° · 2 = 60° - второй угол.
30° · 4 = 120° - третий угол.
30° · 5 = 150° - четвертый угол.
ответ: 30°; 60°; 120°; 150°.