А(-3; 1) В(1; -2) С(-1; 0)
1) Координаты вектора АВ
АВх = хВ - хА = 1 + 3 = 4
АВу = уВ - уА = -2 - 1 = -3
АВ(4; -3)
Координаты вектора АС
АСх = хС - хА = -1 + 3 = 2
АСу = уС - уА = 0 - 1 = -1
АС(2; -1)
2) Модуль вектора АВ
|AB| = √(АВх² + АВy²) = √(4² + (-3)²) = 5
Модуль вектора АC
|AC| = √(АCх² + АCy²) = √(2² + (-1)²) = √5
3) Cкалярное произведение векторов АВ и АС
АВ · АС = АВх · АСх + АВу · АСу = 4 · 2 + (-3 · (-1)) = 11
4) Косину угла между векторами АВ и АС
cos α = AB · AC : (|AB| · |AC|) = 11 : (5√5)= (11√5) /25
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0