Площадь треугольника abc равна 6. на стороне ab выбрана точка m так, что am: bm= 2: 3. на стороне ac- точка n так, что an: nc=5: 3. точка p- точка пересечения прямых cm и bn - отстоит от прямой ab на расстоянии 1,5. найти длину стороны ab.
Трапеция АВСД, ВС=4, АД=22, АС=10, ВД=24, из точки С проводим прямую СК параллельную ВД до пересечения ее с продолжением основания АД в точке К, ДВСК параллелограмм ВС=ДК=4, АК=АД+ДК=22+4=26, периметр треугольника АСК=10+24+26=60, полупериметр (р)=60/2=3, площадьАСК (формула Герона)=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(30*20*6*4)=120 =площади трапеции (док-во: проведем высоту СН на АД, площадь АВСД=(ВС+АД)*СН/2, но ВС=ДК, значит ВС+АД=АК, тогда площадь треугольника=(АК*СН)/2, т.е площадь треугольника=площадь трапеции
Трапеция АВСД, ВС=4, АД=22, АС=10, ВД=24, из точки С проводим прямую СК параллельную ВД до пересечения ее с продолжением основания АД в точке К, ДВСК параллелограмм ВС=ДК=4, АК=АД+ДК=22+4=26, периметр треугольника АСК=10+24+26=60, полупериметр (р)=60/2=3, площадьАСК (формула Герона)=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(30*20*6*4)=120 =площади трапеции (док-во: проведем высоту СН на АД, площадь АВСД=(ВС+АД)*СН/2, но ВС=ДК, значит ВС+АД=АК, тогда площадь треугольника=(АК*СН)/2, т.е площадь треугольника=площадь трапеции
По теореме Чевы получаем:
CO/OB* BM/AM*AN/NC= 1
отудого CO/OB=2/5
Проведем параллельно стороне АВ отрезок CL, Получим пару подобных треугольников:
1)COL ~ AOB.
2)CLP ~ APM.
Из подобия треугольник АОВ~COB получаем CL/AB=CO/OB =2/5 => CL=2AB/5
Из подобия треугольников CLP~APM получаем CP/PM=CL/AM=1 => CP=PM
У нас высота CH параллельна PG которая равна 1,5см или 3/2 (по условию).
Значит треугольники CHM~PGM так же подобны, следовательно:
PM/CM=PG/CH
3/2 / 1/2 = CH
3 =CH
Площадь треугольника АВС , вычисляеться по формуле S=0.5*a*H.
H=3, S=6
S= 3*5y/2=6
15y=12
y=4/5
AB=4/5*5 = 4 см