Через точку пересечения диагоналей квадрата MNPQ (точку О) проведён перпендикуляр OD к его плоскости. OD=8 см, MN=12 см.
Вычислите:
а) расстояние от точки D до прямой NP.
б) площади треугольника MDN и его проекции на плоскость квадрата.
в )расстояние между прямыми OD и MN
Решение начинаем с рисунка.
Диагонали квадрата равны, пересекаются под прямым углом и точкой пересечения делятся пополам.
а) Расстояние от т.D до прямой NP - наклонная DH, проведенная перпендикулярно NP.
По т.о 3-х перпендикулярах ОН⊥MP; DH⊥NP⇒
ОН=КN=MN:2=6 см
Из отношения катетов ОН:OD=3:4 ⊿ DOH - египетский и его гипотенуза DH=10 см- это и есть искомое расстояние. ( можно проверить по т.Пифагора).
б) Расстояния от D до сторон основания равны, и расстояния от D до вершин квадрата равны, т.к. DO проецируется в центр основания, и О - центр вписанной ( и описанной) окружности ⇒ ОК=ОH=6 см
∆ MDN- равнобедренный, его высота DK=DH=10 см
S ∆ MDN=DK•KN=10•6=60 см²
Проекция ∆ MDN на плоскость основания - это прямоугольный ∆ MON. Сторона МN - общая, вершина D ∆ MDN проецируется в точку пересечения диагоналей. MN=12, высота ОК=6
S (⊿=OK•MN:2=36 см²
в) DO и MN- лежат в разных плоскостях и не пересекаются. Они - скрещивающиеся прямые; расстояние между ними определяется общим перпендикуляром ОК, а так как он равен половине стороны квадрата, то это расстояние равно 6 см.
ВС^2=(9-2)^2+4^2 = 7^2+4^2 = 49+16 = 65
AB=3
AC^2= (9-2)^2 +(4-3)^2 = 7^2+1^2 = 50
Косинусы находим по теореме косинусов.
AB^2= BC^2 + AC^2 - 2BC*AC*cosC
cosC = (BC^2 + AC^2 - AB^2)/2BC*AC = (65+50 - 9)/2*(корень из 65*50) = 106/2*(корень из 3250) = 53/5(корень из 130) примерно 0,93
AC^2 = BC^2 + AB^2 - 2AB*BC*cosB
cosB= (BC^2+AB^2 - AC^2)/2*AB*BC = (65+9 - 50)/2*3*(корень из 65) = 6/(корень из 65) примерно 0,74
BC^2= AB^2+AC^2-2AB*AC*cosA
cosA = (AB^2+AC^2- BC^2)/2*AB*AC = (9+50-65)/2*3(корень из 50) = -1/(корень из 50)
Примерно - 0,14 (Угол А - тупой), косинус отрицательный.