Треугольник DAB - прямоугольный. Угол DBA = 30 градусов, так как угол В 60 градусов по условию и угол DBC=30 градусов. DB= 8 . В прямоугольном треугольнике против угла в 30 градусов лежит кактет равный половине гипотенузы. Значит гипотенуза в два раза больше катета. Обознгачим основание перпендикуляра из точки D к стороне СВ буквой К В треугольнике DKB угол DKB= 90 градусов, угол KBD = 30 градусов, Гипотенуза DB=8, значит DK = 4 В треугольнике CDK угол DCK=30 градусов, катет DK=4, значит гипотенуза DC=8 И потому АС = CD +DA=8+4=12
Пусть ABC - прямоугольный треугольник c гипотенузой AB, катетами BC и АС=18 см. Угол CAB = 30 градусов, катет BC противолежащий углу 30 градусов равен половине гипотенузы. AB = 2* BC
1.S=80. 2. S=135
Объяснение: