Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
Основание правильной четырехугольной призмы- квадрат со стороной а, а=24/4=6 см, боковое ребро ⊥ основанию и равно 10, площадь полной поверхности призмы равна Sбок+2Sосн, Sбок = 10*4а= 10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36= 240+72=312 см², основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°, Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см², боковое ребро ⊥ основанию и равно 10 см, т е Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3, сравним площади полных поверхностей этих призм: 312=240+72 > 240+32√3, (√3 < 2) , т е у нас полная поверхность четырехугольной призмы больше треугольной
Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
Объяснение:
надеюсь удачи