М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mitaren10n3
Mitaren10n3
20.01.2021 12:44 •  Геометрия

Найти стороны параллелограмма, если его диагональ равная 20см образует со сторонами углы равные 50° и 30°

👇
Открыть все ответы
Ответ:
Fateev20067
Fateev20067
20.01.2021
Свойства параллельных прямых 
Теорема 

Две прямые, параллельные третьей, параллельны. 
Доказательство. 

Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана. 

Теорема 

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. 
Доказательство. 

Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. 
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана. 

На основании теоремы доказывается: 

Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. 

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
4,7(47 оценок)
Ответ:
mailnadejda
mailnadejda
20.01.2021

ответ:

дана прямая а и точка м, не лежащая на ней.

проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.

получили две точки пересечения дуги и прямой а. обозначим их а и в.

теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).

точки пересечения этих окружностей назовем к и н.

проводим прямую кн.

кн - искомый перпендикуляр к прямой а.

доказательство:

если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.

ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.

ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.

кн - серединный перпендикуляр к отрезку ав.

ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.

4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ