2) ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
СВ - общая сторона
АВ = ВЕ - из равнобедренного ΔАВЕ
Значит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см
3) а) AD ⊥ пл. АВС, следовательно, AD ⊥ СВ;
AD ⊥ BC, AC⊥ CB, то по теореме о 3-х перпендикулярах DC ⊥ ВС, то есть треугольник CBD - прямоугольный.
б) DCB = 90*, BD2 = DC2 + BC; BD = (вектор)4 + 6 = 10
Объяснение:
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см