1. ABCD - осевое сечение цилиндра - прямоугольник.
Н = АВ = 6 см - высота цилиндра,
ВС = Sabcd/AB = 48/6 = 8см
ВС = 2R, R = BC/2 = 4 см - радиус основания цилиндра.
Sпов.ц. = 2πR(R + H) = 2π·4(4 + 6) = 80π см²
2. ABCD - осевое сечение цилиндра - прямоугольник.
Из треугольника АВС:
AB = AC·cos60° = 12 · 0,5 = 6 см
Н = АВ = 6 см
BC = AC·sin60° = 12 · √3/2 = 6√3 см
R = BC/2 = 3√3 см
Sбок = 2πRH = 2π · 3√3 · 6 = 36√3π см²
3. ASB - осевое сечение конуса, SO - высота конуса.
ΔASO: ∠AOS = 90°, ∠ASO = 45°, ⇒ ∠SOA = 45°, ⇒
AO = OS = AS/√2 = 10/√2 = 5√2 м
AB = 2AO = 10√2 м
Sasb = AB·SO/2 = 10√2 · 5√2 / 2 = 50 м²
4. На рисунке - осевое сечение конуса.
ΔАВО прямоугольный, ∠АВО = 30°, ⇒
R = AO = AB/2 = 8 см
Sполн = πR² + πRl = 64π + 128π = 192π см²
5. ΔABC - осевое сечение конуса, равносторонний треугольник.
h = a√3/2, где а - сторона треугольника, h - его высота
h = √3, ⇒ a = 2 см
R = a/2 = 1 см
Биссектриса делит противоположную сторону пропорционально прилегающим сторонам.
6 : 12 = 1 :2. Поэтому сторона SC разделится на 3 части: 1 часть ближе к стороне СВ -это (12/3)*1= 4.
Это и есть длина стороны квадрата.
Теперь переходим к диагонали этого квадрата.
Один конец её находится на боковом ребре на расстоянии 1/3 его длины. Значит, и по высоте будет находиться на 1/3 высоты пирамиды.
Вершина правильной пирамиды проецируется в точку пересечения медиан треугольника основания - это 2/3 высоты основания, считая от вершины.
Высота основания h = 6*cos 30 = 6*(√3/2) = 3√3.
2/3 части её равны 3√3*2 / 3 = 2√3.
Отсюда высота пирамиды H = √(12²-(2√3)²) = √(144-12) = √132 =
=2√33 = 11,4891.
Третья часть составит 2√3 / 3 = 3,82971.
Боковая сторона проекции квадрата на основание равна:
(2/2) / cos 30 = 1 /(√3/2) = 2 / √3 = 1,1547.
Проекция диагонали равна √(4²+ 1.1547²) = √16+ 1,33333) =
= √17,3333 = 4,16333.
Тангенс угла наклона диагонали квадрата полученного сечения к основанию равен 3,82971 / 4,16333 = 0.91987.
Угол равен arc tg 0.91987 = 0.74368 радиан = 42.6099 градуса.