В прямоугольной трапеции MNKP боковая сторона KP=12см, меньшее основание NK= MN, большее основание равно 30см, угол P равен 30 градусам. Найдите площадь трапеции.
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
Объяснение:
S=a+b /2×h
a=NK
b=MP=30
h=MN
С точки К Отпустим перпендикуляр КА к основанию МР Получим треугольник АКР.
КА=МN
Sin30=KA:KP
KA=KP×sin30=12×1/2=6
МN=KA=6
NK=MN=6
S=6+30 /2×6=108 cм^2