Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора:
Мне объясняли так, что вот допустим треугольник АВС. Точки, с которых окр касается сторон треугольника назовем, например, на стороне АВ точка К, на стороне ВС точка Р, на стороне АС точка Н. Ну и теперь чтобы продвинуться от точки К к точки Н, по друге КН пройдем быстрее, чем по сторонам КА и АН, то есть КА+АН больше дуги КН. ну и так с остальными. НС+СР больше дуги НР. и РВ+КВ больше дуги КВ. И когда сложим и части окр и все части треугольника, получим, то дуга окр меньше периметра треугольника
83см²
Объяснение:
Р=4а, где а- сторона ромба.
а=Р/4=40/4=10 см сторона ромба.
h=10-1,7=8,3 см высота ромба.
S=h*a=8,3*10=83 см²