1) Треугольник у которого две стороны равны называется равносторонним. -
2) Если две стороны и угол одного треугольника равны двум сторонам и углу другого треугольника, то такие треугольники равны. +
3) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. +
4) Биссектриса угла треугольника это луч, который выходит из вершины этого угла и делит его пополам. +
5) Биссектрисы треугольника пересекаются в одной точке. +
6) Точка пересечения биссектрис остроугольного треугольника находится вне треугольника. -
7) В равнобедренном треугольнике углы при основании равны. +
8) В равностороннем треугольнике все углы равны. +
9) В равнобедренном треугольнике биссектриса угла является медианой и высотой. +
10) Если ∆АВС = ∆ КЕО, то АВ = КЕ, АС = КО, ВС = ОЕ. +
11) Если в ∆АВС ∠ А = 45°, ∠ С = 45°, то АС – основание треугольника. +
12) Медианы треугольника пересекаются в одной точке. +
13) Если ∆АВС = ∆КЕО, то ∠А = ∠К, ∠В = ∠О. -
14) Высоты треугольника или их продолжения пересекаются в одной точке. +
15) Сумма длин трех сторон треугольника называется его периметром. +
Дано: ΔАВС - прямокутний, ∠А=90°, АС=30 см, ВС=34 см; МК⊥ВС, ВМ=МС. Знайти МК.
Знайдемо АВ за теоремою Піфагора:
АВ=√(ВС²-АС²)=√(1156-900)=√256=16 см.
Проведемо ВК і розглянемо ΔВКС - рівнобедрений, тому що ВМ=СМ і МК⊥ВС, отже ВК=КС.
Нехай АК=х см, тоді КС=ВК=30-х см.
Знайдемо АК з ΔАВК - прямокутного:
АВ²=ВК²-АК²; 16² = (30-х)² - х²; 256=900-60х+х²-х²;
60х=900-256=644; х=10 11/15 см. АК=10 11/15 см, тоді
ВК = 30 - 10 11/15 = 19 4/15 = 289/15 см.
Знайдемо МК за теоремою Піфагора з ΔВМК, де ВМ=34:2=17 см.
МК²=ВК²-ВМ²=(289/15)² - 17² = (83521/225) - 289 = 18496/225.
МК=√(18496/225)=136/15=9 1\15 см.
Відповідь: 9 1/15 см.